
Eur. Phys. J. D 41, 403–411 (2007)
DOI: 10.1140/epjd/e2006-00228-6 THE EUROPEAN

PHYSICAL JOURNAL D

The influence on atomic decay by inserting a LHM layer
into an ordinary one dimensional multi-layer structure

J.P. Xu1,2,a, Y.P. Yang1, N.H. Liu2,3, and S.Y. Zhu2,4

1 Department of Physics, Tongji University, Shanghai 200092, P.R. China
2 Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
3 Department of Physics, Nanchang University, Nanchang 330047, P.R. China
4 Key Laboratory of Quantum Communication and Quantum Computation, University of Science and Technology of China,

Hefei 230026, P.R. China

Received 27 February 2006 / Received in final form 5 June 2006
Published online 13 October 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. Inserting left-handed material (LHM) layers into a one dimensional structure can influence the
spontaneous emission (SpE) of a two-level atom. This has been investigated, starting from the simplest
case of a three-layer system, where we find the reflected field (atom can “see”) passing through LHM
layer is stronger than that through the corresponding normal layer. Indeed the induced decay is more
strongly influenced by reflected field passing through LHM layer. Based on this and after further analysis
of reflectivity, we find that, a quarter photonic crystal (PC) composed of alternately LHM and RHM can
inhibit the atomic spontaneous emission more intensely compared to an ordinary PC.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 42.50.Lc Quantum fluctuations, quan-
tum noise, and quantum jumps – 42.70.Qs Photonic bandgap materials

1 Introduction

Recently a new type of material called left-handed mate-
rials (LHM) [1] has attracted considerable attention. In
1968, Veselago [1] first suggested the concept of LHM,
which refers to a material processing a negative refractive
index with the permittivity and the permeability being
negative simultaneously. The wave vector is anti-parallel
to the direction of energy flow, and the electric field, mag-
netic field and the wave vector form a left-handed triplet.
Some unusual phenomena, such as reverse Doppler shift,
reverse Cerenkov radiation, negative refraction, reverse
light pressure et al. are expected in LHM. Experimentally,
LHM had been realized in the microwave band [2–4]. As
the result, its most potential application of the LHM, the
perfect lens which can focus both propagation waves and
the evanescent waves, has been predicted [5]. In addition,
Li et al. pointed out that a stack composed of alternating
LHM layers and normal dielectric (RHM) layers can give
rise to a new type of band gap with novel properties [6].

In 1946, Purcell [7] pointed out that the atomic spon-
taneous decay rate can be enhanced by putting the atom
in a cavity. Since then, how to inhibit or enhance atomic
SpE has became an interesting subject. Most research has
focused on the inhibition of the atomic SpE, because it
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prolongs the atomic coherent time and is useful in quan-
tum computation and quantum information applications.
The effective way to realize this is to put the atom into a
micro-cavity or a PC [8–10], because the density of states
in these environments can be controlled easily by vary-
ing the dimension and other parameters of the structure.
If we introduce LHM layers into a multi-layer structure,
what are the influences of the LHM layers on atomic de-
cay comparing with the influence of the RHM layer. Here
we define the PC containing alternate the LHM and the
RHM layers as LHM-RHM PC, and the PC containing
only the RHM layers as ordinary PC. After analyzing the
reflected field emitted by the atom from different inter-
faces in detail, we find that LHM layers have a stronger
influence on the atomic decay.

This paper is organized as follows: in Section 2, we in-
troduce the model and the interaction Hamiltonian. The
different influences of LHM from RHM in a three-layer
structure on the atomic decay have been analyzed in Sec-
tion 3. The case in a PC is presented in Section 4. Finally
we give the conclusion in Section 5.

2 Model and interaction Hamiltonian

The 1D LHM-RHM PC without dispersion and dissipa-
tion is shown in Figure 1. A two-level atom (transition
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Fig. 1. Sketch of the LHM-RHM 1DPC structure.

frequency ω0, position ra(0, 0, za) and dipole moment p) is
placed in the middle layer (layer 0). In order to have a com-
parison between the LHM and the RHM, absolute values
of the permittivity and the permeability for the RHM lay-
ers and for the LHM layers are set be equal. The center of
the structure is the origin of the z-coordinate. Each layer
is isotropic and in the x-y plane. Though most LHM are
anisotropic in experiments [2,3], however isotropic LHM
have been realized recently [4]. Other parameters of the
structure are shown in Figure 1. Note that the middle
layer is set to be vacuum in order to be consistent with
the real-cavity model [11–13].

Now we introduce the quantization of the three dimen-
sional electromagnetic field in the presence of the 1DPC.
The positive frequency part of the electric field operator
for our system can be written as

E(+)(r, t) =
∑

K+,λ

U(K+, λ, r)ê+ξ
m
KaK+λe

−iνK t

+
∑

K−,λ

U(K−, λ, r)ê−ξm
KaK−λe

−iνK t (1)

where νK is the frequency of K± and ξm
K =

(�νK/2|εm|V )1/2 with m determined by the position r
and εm be the permittivity of the mth layer. U(K+, r),
U(K−, r) are the modified mode function in the presence
of the 1D structure. According to the quantization scheme
in reference [14], the mode functions together with the
field unit vectors (ê+, ê−) is expressed as the following
piecewise functions, which

U(K+, λ, r)ê+ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[eiKm+·rêm(K+, λ)
+Rλ

Re
iKm−·r+2iKzz−N−1 êm(K−, λ)], z < z−N−1

tλLme
iKzz−N−1[eiKm+·r−iKmzzm−1 êm(K+, λ)

+rλ
Rme

iKm−·r+iKmz(zm−1+2dm)êm(K−, λ)]/Dλ
m,

zm−1 ≤ z < zm

T λ
Le

iKm+·r+iKz(z−N−1−zN)êm(K+, λ), z ≥ zN

(2)

and

U(K−, λ, r)ê− =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[eiKm−·rêm(K−, λ) +Rλ
Le

iKm+·r−2iKzzN êm(K+, λ)],
z ≥ zN

tλRme
−iKzzN [eiKm−·r+iKmzzm êm(K−, λ)

+rλ
Lme

iKm+·r+iK
mz(2dm−zm) êm(K+, λ)]/Dλ

m,
zm−1 ≤ z < zm

T λ
Re

iKm−·r+iKz(z−N−1−zN)êm(K−, λ), z < z−N−1

(3)
where

Km± = (Kx,Ky,±Kmz)
= K(sin θ cosφ, sin θ sinφ,±nm cos θm). (4)

Here the angle θm is determined by the angle θ in vacuum
according to Snell’s law

sin θ = nm sin θm. (5)

The superscript λ = TE, TM indicates two transverse
polarization directions, whose unit vectors are defined as
{

êm(K±,TE) = (sinφ,− cosφ, 0),

êm(K±,TM) = (cos θm cosφ, cos θm sinφ,∓ sin θm).
(6)

In the expressions of the mode functions (2) and (3),
tλL/Rm denotes the transmission coefficient through the
left/right part of the mth layer (zm−1 < z < zm), rλ

R/Lm

denotes the reflective coefficient on the right/left interface
of the mth layer. T λ

R/L denotes the total transmission co-
efficient of the entire structure coming from the right/left
interface of the region of z < z−N−1/z > zN . Rλ

R/L de-
notes the total reflective coefficient on the right/left inter-
face of the region of z < z−N−1/z > zN . Dλ

m originates
from the multi-reflection effect in the mth layer,

Dλ
m = 1 − rλ

Lmr
λ
Rme

2iKmzdm . (7)

So the interaction Hamiltonian in the interaction picture is

VI(t) = �

∑

K+,λ

[gλ
K+

(ra)σ+aK+λe
i(ω0−νK)t +H.C.]

+ �

∑

K−,λ

[gλ
K−(ra)σ+aK−λe

i(ω0−νK)t +H.C.] (8)

where gλ
K±(ra) are the atom-field coupling coefficients,

gλ
K+

(ra) = −ξ
0
K

�
(tλL0/D

λ
0 )eiK+·ra+iK(z−N−1+d0/2) cos θ

× [p · ê0(K+, λ) + p · ê0(K−, λ)rλ
R0e

−iK(2za−d0) cos θ],
(9)

gλ
K−(ra) = −ξ

0
K

�
(tλR0/D

λ
0 )eiK−·ra+iK(d0/2−zN ) cos θ

× [p · ê0(K−, λ) + p · ê0(K+, λ)rλ
L0e

iK(2za+d0) cos θ].
(10)
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Γ||
Γ0

=
3
8
n0µ0

π/2∫

0

dθ sin θ

{∣∣∣∣
tTE
L0

DTE
0

∣∣∣∣
2 ∣∣∣1 + rTE

R0 e
in0k0(d0−2za) cos θ

∣∣∣
2

+
∣∣∣∣
tTM
L0

DTM
0

∣∣∣∣
2

cos2 θ
∣∣∣1 + rTM

R0 ein0k0(d0−2za) cos θ
∣∣∣
2

+
∣∣∣∣
tTE
R0

DTE
0

∣∣∣∣
2 ∣∣∣1 + rTE

L0 e
in0k0(d0+2za) cos θ

∣∣∣
2

+ cos2 θ
∣∣∣∣
tTM
R0

DTM
0

∣∣∣∣
2 ∣∣∣1 + rTM

L0 ein0k0(d0+2za) cos θ
∣∣∣
2
}
, (17a)

Γ⊥
Γ0

=
3
4
n0µ0

π/2∫

0

dθ sin3 θ

{∣∣∣∣
tTM
L0

DTM
0

∣∣∣∣
2 ∣∣∣1 − rTM

R0 ein0k0(d0−2za) cos θ
∣∣∣
2

+
∣∣∣∣
tTM
R0

DTM
0

∣∣∣∣
2 ∣∣∣1 − rTM

L0 ein0k0(d0+2za) cos θ
∣∣∣
2
}

(17b)

The state vector of the system is

|ψI(t)〉 = Ca(t) |a, 0〉 +
∑

K+,λ

CbK+λ
(t)
∣∣b, 1K+λ

〉

+
∑

K−,λ

CbK−λ(t)
∣∣b, 1K−λ

〉
. (11)

The state |a, 0〉 refers to the atom in the excited state
with no photon, and

∣∣b, 1K±λ

〉
refers to the atom in the

ground state with one photon in the mode of (K±, λ). We
assume initially, Ca(0) = 1 and CbK±λ(0) = 0. Solving the
Schrödinger equation in the interaction picture

∂

∂t
|ψI(t)〉 = − i

�
VI |ψI(t)〉 (12)

with a standard deduction, the equation of atomic upper
level probability amplitude can be obtained [15]

Ċa(t) = −
⎡

⎣
∑

K+,λ

|gλ
K+

(ra)|2 +
∑

K−,λ

|gλ
K−(ra)|2

⎤

⎦

×
t∫

0

dt′ei(ω0−νK)(t−t′)Ca(t′). (13)

Now transforming the summation over K+ and K− into
an integral, which gives

∑

K±

→ V

(2π)3

∫
dK± =

V

(2π)3

∞∫

0

dK

π/2∫

0

dθ

2π∫

0

dφK2 sin θ.

(14)
Equation (13) becomes

Ċa(t) = − V

(2π)3

t∫

0

dt′Ca(t′)

∞∫

0

dKK2eic(k0−K)(t−t′)

×
2π∫

0

dφ

π/2∫

0

dθ sin θ
TM∑

λ=TE

[|gλ
K+

(ra)|2 + |gλ
K−(ra)|2], (15)

where k0 = ω0/c and K = νK/c.

With the Weissikopf-Wigner approximation [15]
(t� 1/ω0), equation (15) can be reduced to

Ċa(t) = −Γ
2
Ca(t) (16)

where Γ is the steady decay rate and depends on the
atomic polarization and position. If the atomic dipole is
along the x-axis, p = p(1, 0, 0), we have Γ = Γ||

see equation (17a) above

where Γ0 is the decay rate in the free space (the vacuum).
If the atomic dipole is perpendicular to the interfaces of
the layers, i.e. p = p(0, 0, 1), we have Γ = Γ⊥

see equation (17b) above.

It is well-known that atomic spontaneous emission is re-
lated to its environment. In current case, the environment
is represented by the reflection and transmission coeffi-
cients.

3 Three-layer case

In order to see the difference on the atomic decay in the
ordinary PC and in the LHM-RHM PC, we consider the
symmetric three-layer structure (0|A|0|A|0) first. Here “|”
indicates the interface between two materials. The “0”
refers to the vacuum layers, and the “A” refers to the lay-
ers with thickness dA and refractive index nA. The atom is
at the center of the middle layer za = 0 and the thickness
of it is d0.

In the following we consider the special LHM and
RHM for layer A, the absolute refractive index equals to
1 (εA = 1/µA and εA �= 1). For the atomic dipole along
the x-axis, p = p(1, 0, 0), the steady decay rate can be
decomposed as follows under the condition of t � 1/ω0
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Γ ≈ Γ0 (a)

+
3
2
Γ0Re

2∑

m=1

(−r0)meimk0d0

[
2

imk0d0
+

2
(mk0d0)

2 − 2
i (mk0d0)

3

]
(b)

+
3
2
Γ0Re

2∑

m=1

(t20r0)
meim(2nAk0dA+k0d0)

[
2

im(2nAk0dA + kd0)
+

2
m2(2nAk0dA + kd0)2

− 2
im3(2nAk0dA + k0d0)3

]
(c)

+
3
2
Γ0Re

2∑

m=1

(−2t20r
2
0)

meim(2nAk0dA+2k0d0)

[
2

i(2nAk0dA + 2k0d0)
+

2
(2nAk0dA + 2k0d0)2

− 2
i(2nAk0dA + 2k0d0)3

]

(d)

+ ... (18)

Fig. 2. The path of each term in equation (18).

(see the Appendix)

see equation (18) above

where r0 is the Fresnel reflectivity incident from layer A to
vacuum for the TE wave, t20 is expressed in equation (A.8)
(detailed deductions are shown in the Appendix). Here the
Lamb shift is neglected. Each term in equation (18) rep-
resents the contribution of the reflected fields back to the
atom with the different paths. The terms (b), (c) and (d)
are shown in Figure 2. Term (a) describes the free decay
which is immune to the surroundings; term (b) describes
the contribution of the field reflected at the nearest inter-
faces; term (c) represents the contribution reflected at the
outside interfaces; term (d) the contribution reflected from
one nearest interface and its opposing outer interface.

From equation (18), the induced decay rate (terms (b),
(c) and (d)) caused by the reflected field is mainly in-
versely proportional to the phase shift. Furthermore, x−1,
x−2 and x−3 in each term correspond to the dipole ra-
diation field, the induced field and the electrostatic field
respectively. In the LHM, the phase shift decreases with
wave propagation. On the other hand, the phase shift
is always increasing in RHM. Finally the reflected field
passing through LHM layer is stronger in amplitude than
that through RHM layers, which leads to a more intense
change in the decay rate. As the reflectivity and transmit-
ted coefficients (r0, t20) at the interface are the same for
both the LHM and RHM cases, from equation (18), the
only difference between LHM and RHM is the phase shift
(mnAk0dA + lk0d0, m and l are arbitrary integrals). The
effect of the RHM or the LHM layer A on SpE can be
summarized as follows.

Firstly, terms (b), (c) and (d) will be small enough
that they can be omitted as d0 tends to infinity, and
consequently only term (a) will contribute to the decay,
which is just as in free space, Γ ≈ Γ0. Secondly, term
(b) is identical for the LHM and the RHM, because it
don’t include the contribution of the reflected field pass-
ing through layer A. Thirdly, term (c) is smaller than (b)
for RHM case, because the denominator of (c) is larger
than (b). However, for LHM layer, i.e. nA < 0, the de-
nominator |m(2nAk0dA + n0k0d0)| can be smaller than
|mk0d0|, in which case the contribution of term (c) will be
larger than that of term (b). Consequently, the reflected
field through the LHM layer is stronger than that through
the RHM layer, which leads to stronger effect on the decay
rate. Finally, terms (c) and (d) can be neglected when dA

is large enough, and so the difference between LHM and
RHM will disappear. That means layer 0 is connected to
two half-infinite layers.

There also exist many other contributions of the re-
flected field along other paths. They must be much weaker
than terms (b), (c) and (d) for the RHM case (due to
|r0| < 1 and a larger phase shift). However, for the LHM
case, they may be equal to or even larger than terms (b),
(c) and (d) due to the phase compensation effect of the
LHM layer. We neglect them here in order to be concision.

Now we perform the numerical calculations according
to equation (17a) to confirm the deductions made above.
Layers A with thickness dA can be LHM (εA = −0.25
and µA = −4) or RHM (εA = +0.25 and µA = +4). From
equation (18), we know that the thickness of layer A plays
the dominant role in distinguishing between the effect of
LHM and RHM. So we plot the SpE rate as function of
dA according to equation (17a) in Figure 3 with fixed d0.

From Figure 3, the normalized decay rate oscillates
with dA. The oscillation is caused by the periodically vari-
ation of the reflectivity with increasing dA. In other words,
the density of states changes periodically with dA.

Because the intensity of the reflected field passing
through LHM layer back to atom is stronger than that
passing through RHM, the superposition of the reflected
field and the emitted field in LHM case can have stronger
constructive or deconstructive interference. In Figure 3,
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Fig. 3. The normalized decay rate as function of dA. Solid line
for the LHM layer A, dashed line for the RHM layer A.

Fig. 4. The decay rate as function of dA, (a) for d0 = 0.75λ0,
(b) for d0 = 0.5λ0, (c) for d0 = 0.25λ0. Solid line for the LHM
layer A, dashed line for the RHM layer A.

the stronger deconstruction (deeper inhibition) is pre-
sented. The difference between the RHM and the LHM
layers will disappear as dA � 3λ0.

A similar result will be obtained if the index of layer A
|nA| �= 1. For example, we plot the decay rate versus dA

in Figure 4 for layer A of LHM (εA = −8 and µA = −2)
or of RHM (εA = +8 and µA = +2). The change of the
decay rate (the difference between the decay rate and the
free space decay rate) for LHM (solid line) is larger than
that for RHM (dashed line), see Figure 4. The amplitude
of the change of SpE rate for LHM increases linearly with
dA, while decreases for RHM.

There is always a focal point of the reflected field to the
left of the LHM with nA = −1 according to Snell’s law,
see Figure 5a. The position of the focus will leave away
from the interface with increasing dA. The intensity of the
reflected field is strongest at the focus. So the change of
decay rate is largest when dA ≈ d0, as shown by the solid
line in Figure 3.

However, when nA �= −1, there is no clear focal point
of reflected field, as shown in Figure 5b. Due to the non-
perfect focus of reflected field in the case of Figure 4, the

Fig. 5. (a) A perfect focusing of the reflected field as nA = −1,
(b) non-perfect focusing of the reflected field as LHM’s index
nA �= −1 (we omit other reflected paths including transmission
to the right and multi-reflection).

tendency to increase for LHM is longer than in Figure 3.
The decay rate in Figure 4 will have the same value for
the LHM and the RHM at a much larger dA compared
with the case of Figure 3.

4 Photonic crystals

The method giving equation (18) only fits for the simplest
case. For more a complicated case, such as in a PC with
an arbitrary refractive index, the decay rate cannot be de-
composed into the formation in equation (18), because the
integral over an angle is impossible to resolve analytically.
However, equation (18) provides us with a clear physical
picture to distinguish the different influences of the LHM
layer from the RHM layer on the atomic decay. We can
predict that, for an arbitrary structure, if it contains the
LHM layer (but not all), the reflected field passing through
the LHM layer must be larger than that passing through
the RHM case. Furthermore, the LHM-RHM PC will have
the stronger influence on the inhibition or enhancement of
the SpE than the ordinary PC.

It is known that the LHM-RHM PC has a near omni-
directional gap for the TE mode, while the ordinary PC
hasn’t [16]. In the following we will consider the quar-
ter wavelength PC, the optical length of each layer being
a quarter of one wavelength, because the quarter wave-
length PC has a high reflectivity (or gap around centre
frequency) in the normal direction. All layer Bs are the
vacuum (εB = 1.0, µB = 1.0) and dB = d0 = λ0/4.
For comparison, layer As can be LHM or RHM with the
same absolute permittivity and permeability (εA = ±2,
µA = ±0.5, |nA|dA = λ0/4). The total structure has the
form (0|A|(|B|A|)40(|A|B|)4|A|0). The reflectivity as func-
tion of frequency and incident angle are plotted in Fig-
ure 6.

In Figure 6, the white region implies nearly complete
reflection. The lighter the color, the higher the reflectiv-
ity. Comparing with Figures 6a and 6b, we find that the
LHM-RHM PC has a much wider gap than the ordinary
PC not only in frequency but also in incident angle. Near
2ω0, there is a resonant tunneling line in both cases. The
difference between Figures 6a and 6b can be explained by
the energy band theory used in reference [6], and also can
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Fig. 6. The reflective index for TE waves versus frequency and incident angle for (a) RHM PC and (b) for LHM-RHM PC (TE
and TM have no difference here).

Fig. 7. The SpE rate as a function of ω when the atom lies
between two symmetrical PCs ((AB)4A).

be understood by the propagation analysis in the previous
section. All the effects originate from the phase compen-
sation effect of the LHM. It should be pointed out that,
in Figure 6b, there is no omni-directional gap because the
absolute refractive indexes are the same for each layer.
The SpE rates of the atom with p = p(1, 0, 0) as function
of frequency are drawn in Figure 7.

In Figure 7, the solid line and the dashed line are the
SpE rates for the LHM-RHM PC and the ordinary PC,
respectively. The SpE in the LHM-RHM PC is inhibited
much more profoundly than in the ordinary PC in the fre-
quency region near the gap. This is easy to understand
by comparing Figure 6a with Figure 6b. High reflection
means strong localization and fewer channels to propa-
gate out. The LHM-RHM PC has a much wider gap than
the ordinary PC both in frequency and in incident angle,
which leads to a lower density of states within it.

A similar result is also obtained in other quarter wave-
length PC (|nA| dA = nBdB = d0 = λ0/4) with the ab-

Fig. 8. The SpE rate as a function of ω when the atom lies
between two symmetrical PCs ((AB)4A).

solute value of the index not equal to 1. Consider the
LHM-RHM PC and the ordinate PC with εA = ±2,
µA = ±1 for the layer A and the vacuum for the layer B
(εB = 1.0, µB = 1.0).

The SpE rate in the LHM-RHM PC is inhibited much
stronger than in the ordinate PC at the frequency region
near the gap, which is similar to Figure 7.

It should be noted that there is an apparent difference
between the atomic decay in the F-P cavity and in the
1DPC. Though the 1DPC is a natural extension of the F-
P cavity (by replacing the wall of the cavity by the 1DPC),
the atomic decay is much more complicated in the 1DPC
than in the F-P cavity due to the multiple reflection in
each layer and the dependence of the reflectivity in the
1DPC on incident angles (the reflectivity at the wall of
a cavity is taken to be a constant), which leads to less
inhibition in the PC than in the F-P cavity, see dashed
line in Figure 7 and 8. From Figure 6b, we can find that
the reflectivity for the LHM-RHM PC is insensitive to the
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angle θ at the frequency region near the gap, similar to
the wall of the cavity, and the atomic steady decay rate is
always inhibited more strongly in the LHM-RHM PC (see
Figs. 7 and 8), which is similar to that in the cavity [14].

5 Conclusion

The spontaneous emission of the two-level atom located
in a multi-layer structure containing LHM has been stud-
ied, and the results are compared with that in ordinary
structure. In a three-layer structure, we find that the SpE
rate oscillates with dA for both the RHM layer A and the
LHM layer A. The change of the SpE rate for the LHM
case is much larger than that for RHM when dA is small.
Such a difference can be explained from the viewpoint of
the reflected field which feed back to the atom. The re-
flected field passing through the LHM layer is stronger
than that passing through the RHM layer. Due to the su-
perposition (interference) of the reflected fields from all
paths and the emitted field, the structure containing the
LHM has a stronger effect on the atomic decay than the
ordinary structure. Such a conclusion can be extended to
the case of the quarter wavelength PCs. Compared with
the case in the ordinary PC, the LHM-RHM PCs have a
higher reflectivity which results in a strong suppression of
the SpE under the appropriate conditions.

From our analysis, we find a new way to enhance or in-
hibit the atomic spontaneous decay without changing the
dimension of the structure and it can be easily expanded
to multi-atom interference.

It is necessary to point out the reason why we have not
considered dispersion and dissipation. Firstly, the disper-
sion information will be lost with the Markov approxima-
tion and dispersion has no influence on the steady atomic
decay. Secondly, the main difference between the LHM and
the RHM is the opposite phase shift within them. How-
ever, the dissipation only provides a decay channel called
non-radiated decay to the atom [13,17,18], and the non-
radiated decay has no contribution to distinguish the dif-
ferent influences between the LHM and RHM. Introducing
dissipation in the model just weaken the influence between
the LHM and the RHM on the atomic decay, because only
the propagating radiated field can distinguish the LHM
from the RHM. When considering the non-Markov pro-
cess, the dispersion of the LHM has to be taken into ac-
count, which will be done in further research.
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Appendix: The evolution of Ca(t)
in the three-layer structure for a special case

For the symmetric structure (rλ
L0 = rλ

R0 = rλ
0 ) and

p = p(0, 0, 1), after inserting equations (9, 10) into equa-

tion (15), we get

Ċa(t) ≈ − 3
8π
Γ0

π/2∫

0

dθ sin θ

t∫

0

dt′Ca(t′)

×
∞∫

−∞
dνKe

i(ω0−νK)(t−t′) ∣∣tTE
0

∣∣2
∣∣∣∣
1 + rTE

0 eiKd0 cos θ

DTE
0

∣∣∣∣
2

− 3
8π
Γ0

π/2∫

0

dθ sin θ cos2 θ

t∫

0

dt′Ca(t′)

×
∞∫

−∞
dνKe

i(ω0−νK)(t−t′)
∣∣tTM

0

∣∣2
∣∣∣∣
1 + rTM

0 eiKd0 cos θ

DTM
0

∣∣∣∣
2

,

(A.1)

where Γ0 = p2k3/(3ε0π�) is the vacuum decay rate of the
atom. In the above integration, K2 is replaced by k2

0 as
it is not the exponential function. From equation (7), the
last factor in the above equation can be rewritten as

|tλ0 |2
∣∣∣∣
1 + rλ

0 e
iKd0 cos θ

Dλ
0

∣∣∣∣
2

= 1 +
∞∑

n=1

(rλ
0 e

iKd0 cos θ)n

+ (rλ∗
0 e−iKd0 cos θ)n. (A.2)

In the derivation of (A.2),
∣∣tλ0
∣∣2 = 1− ∣∣rλ

0

∣∣2 has been used
due to lossless of all the layers. Inserting (A.2) into (A.1),
we get

Ċa(t) =

− 3
8π
Γ0

π/2∫

0

dθ sin θ

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)

×
[
1 +

∞∑

m=1

(rTE
0 eiKd0 cos θ)m + (rTE∗

0 e−iKd0 cos θ)m

]

I, II, III

− 3
8π
Γ0

π/2∫

0

dθ sin θ cos2 θ

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)

×
[
1 +

∞∑

m=1

(rTM
0 eiKd0 cos θ)m + (rTM∗

0 e−iKd0 cos θ)m

]

IV,V,VI.
(A.3)

Next we will calculate the six integrations marked by I,
II, III, IV, V and VI for t � 1/ω0. The following well-
known results (valid for t � 1/ω0) are useful to perform



410 The European Physical Journal D

the next calculations

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′) = πCa(t) (A.4a)

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)eimKd0 =

2πeimω0d0/cCa(t−md0/c)Θ(t−md0/c)
(A.4b)

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)e−imKd0 = 0. (A.4c)

The most simplified example is the cavity formed by two
single layers which its refractive index is 1 or −1 which
we call it as special case. For example, εA = 0.5, µA = 2
then nA = 1, or εA = −0.5, µA = −2 then nA = −1. The
advantage of such a case is that the reflectivity between
each interface is independent of the incidence angle.

The total reflectivity of the layer can be expanded as

rλ
0 = rλ

out+t
λ
int

λ
outr

λ
ine

2inAKdA cos θ
∞∑

m=0

(rλ2

in e
2inAKdA cos θ)m

λ = TE or TM. (A.5)

According to Fresnel’s law, note that cos θA = cos θ0

rTE
in =

nA − µA

nA + µA
, rTM

in = rTE
in ,

rTE
out = −rTE

in , rTM
out = −rTE

in , (A.6)

where rλ
in is the reflectivity incident from layer A to

vacuum. rλ
out is the reflectivity incident from vacuum to

layer A

tTE
in =

2µA

µA + nA
, tTM

in = tTE
in ,

tTE
out =

2nA

µA + nA
, tTM

out = tTE
out , (A.7)

where tλout is the transmission incident from layer A to
vacuum. tλin is the transmission incident from vacuum to
layer A.

We set

r0 = rTE
in , t20 = tTE

in tTE
out < 1 (A.8)

and with the relationship between the different kinds of
reflectivity and transmission in (A.6) and (A.7), we get

rTE
0 = −r0 + t20r0e

2inAKdA cos θ
∞∑

m=0

(r20e
2inAKdA cos θ)m

(A.9)

rTM
0 = rTE

0 . (A.10)

Inserting (A.9) and (A.10) into (A.3), we can perform the
six integrations in (A.3)

I + IV = − 1
2π
Γ0

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)

= −Γ0

2
Ca(t) (A.11)

II = − 3
8π
Γ0

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)

×
∞∑

m=1

π/2∫

0

dθ sin θ
(
rTE
0 eiKd0 cos θ

)m
. (A.12)

For equation (A.9), we only retain the terms up to r20 . So
that

rTE
0 eiKd0 cos θ ≈ −r0eiKd0 cos θ

+ t20r0e
2inAKdA cos θeiKd0 cos θ

(rTE
0 )2e2iKd0 cos θ ≈ r20e

2iKd0 cos θ

− 2t20r
2
0e

2inAKdA cos θe2iKd0 cos θ

+ t40r
2
0e

4inAKdA cos θe2iKd0 cos θ.

Consequently, we have

∞∑

m=1

(
rTE
0 eiKd0 cos θ

)m ≈
2∑

m=1

(−r0eiKd0 cos θ
)m

+
2∑

m=1

(
t20r0e

2inAKdA cos θeiKd0 cos θ
)m

− 2t20r
2
0e

2inAKdA cos θei2Kd0 cos θ (A.13)

III = − 3
8π
Γ0

t∫

0

dt′Ca(t′)

∞∫

0

dνKe
i(ω0−νK)(t−t′)

×
∞∑

m=1

π/2∫

0

dθ sin θ
(
rTE
0 e−imKd0 cos θ

)∗m
. (A.14)

Similarly the sum can be written as

∞∑

m=1

(
rTE
0 eiKd0 cos θ

)∗m ≈
2∑

m=1

(−r0e−iKd0 cos θ
)m

+
2∑

m=1

(
t20r0e

−2inAKdA cos θe−iKd0 cos θ
)m

− 2t20r
2
0e

−2inAKdA cos θei2Kd0 cos θ. (A.15)
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Ċa(t) ≈ −Γ0

2
Ca(t)

− 3

4
Γ0Re

2∑

m=1

(
(−r0)

meimk0d0

[
2

imk0d0
+

2

(mk0d0)
2
− 2

i (mk0d0)
3

])
Ca(t)

− 3

4
Γ0Re

2∑

m=1

(
(t20r0)

meim(2nAk0dA+k0d0)

[
2

im(2nAk0dA + k0d0)
+

2

m2(2nAk0dA + k0d0)2
− 2

im3(2nAk0dA + k0d0)3

])
Ca(t)

− 3

4
Γ0Re

2∑

m=1

(−2t20r
2
0)

meim(2nAk0dA+2k0d0)

[
2

i(2nAk0dA + 2k0d0)
+

2

(2nAk0dA + 2k0d0)2
− 2

i(2nAk0dA + 2k0d0)3

]
Ca(t)

+ ... (A.18)

Γ ≈ Γ0

+
3

2
Γ0Re

2∑

m=1

(
(−r0)

meimk0d0

[
2

imk0d0
+

2

(mk0d0)
2 − 2

i (mk0d0)
3

])

+
3

2
Γ0Re

2∑

m=1

(
(t20r0)

meim(2nAk0dA+k0d0)

[
2

im(2nAk0dA + k0d0)
+

2

m2(2nAk0dA + k0d0)2
− 2

im3(2nAk0dA + k0d0)3

])

+
3

2
Γ0Re

2∑

m=1

(−2t20r
2
0)

meim(2nAk0dA+2k0d0)

[
2

i(2nAk0dA + 2k0d0)
+

2

(2nAk0dA + 2k0d0)2
− 2

i(2nAk0dA + 2k0d0)3

]

+ ... (A.19)

The result of IV and V can be obtained in a similar way.
With the help of (A.4) and the following two formulas,

π/2∫

0

dθ sin θeiF cos θ =

1∫

0

dxeiFx =
eiF0 − 1
iF

(A.16)

π/2∫

0

dθ sin θ cos2 θeimKd0 cos θ = eimKd0

[
1

imKd0

+2
1

(mKd0)
2 − 2

1
i (mKd0)

3

]
+

2
i (mKd0)

3 (A.17)

and note that Ca(t−mdn/c) ≈ Ca(t)at t� 1/ω0, we get
the final equation for (A.3) without the Lamb shift

see equation (A.18) above

and the steady decay rate can be written as

see equation (A.19) above.
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12. S. Scheel, L. Knöll, D.-G. Welsch, Phys. Rev. A 60, 1590
(1999)
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